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Abstract: Cancer is the largest cause of death in Korea, and its proportion is increasing.  Meanwhile, the cancer 

mortality rates vary over time as well as age. With the increased life expectancy in Korea, the proportion of the elderly 

age among cancer deaths has increased over time, while that of the young age has decreased. To reflect the proportions 

of the categories with such dynamic structures of age and time, a multinomial time series model can be used as a 

prediction model. However, there is a difficulty in estimating the parameters through the Markov Chain Monte Carlo 

(MCMC) method when some cell counts are very small relative to others, such as the number of deaths from cancer of 

young age group. In order to predict the age-specific cancer mortality by reflecting its dynamic structure and by 
overcoming estimation problems in MCMC, a power transformation is adopted as a link function of multinomial time 

series model instead of a logit link function, and forecasts the age-specific cancer mortality of male in Korea by 2040 

using the proposed method.  
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I. INTRODUCTION 

 

Cancer is the largest cause of death in Korea. In 2005, the percentage of male deaths from cancer is 30.63%, and 21.78% 

for women. As shown in Table 1, the cancer mortality rates vary over time as well as age groups. The age-specific 

cancer mortality under 40 years has been decreased, while that over 40 years has been increased. It implies that, in 
order to establish future medical policy or welfare policy, it is necessary to investigate the change of the number of 

deaths over time not only by disease but also by age.  

 

TABLE 1 AGE-SPECIFIC CANCER MORTALITY OF MALE 

 

Year 0-19 20-39 40-59 60-79 80+ 

1997 1.3% 4.5% 32.7% 56.1% 5.5% 

1998 1.2% 4.4% 32.2% 55.8% 6.6% 

1999 1.1% 3.7% 31.5% 57.5% 6.2% 

2000 1.0% 3.8% 30.3% 56.6% 8.3% 

2001 0.9% 3.4% 27.1% 59.6% 9.2% 

2002 0.7% 3.7% 27.5% 58.1% 10.0% 

2003 0.7% 2.7% 26.1% 59.7% 10.8% 

2004 0.5% 2.8% 27.3% 58.4% 11.0% 

2005 0.6% 2.8% 24.9% 59.6% 12.1% 

2006 0.5% 2.3% 24.9% 59.2% 13.1% 

2007 0.7% 1.8% 23.7% 60.7% 13.2% 

 

The most simple and easy way to predict the age-specific deaths from cancer is univariate time series model for each 

age group. However, it leads to an internal discrepancy problem that the summation of estimated number of deaths 

from the each univariate time series model for each age group does not match to the total number of deaths [1][2]. 
Moreover, for the categories with small cell counts, the univariate model is well-known to be inappropriate because of 

the normality assumption [3][4]. 

 

To overcome these problems, [5], [4] and [6] proposed a multinomial time series model. They assume that cell counts 

in categories follow multinomial distribution with a fixed total sum for each time, and the logit link functions 

transformed from the cell probabilities have dynamic structures. [4] Proposed a multinomial time series model in which 

a vector of logit link functions follows a linear model and the coefficient vector of this model has a first order 
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autocorrelation. [6] suggested the unit root model for the mean of the vectors of logit link functions and used the 

MCMC method to estimate the parameters of each model. 
However, for the categories with a small cell counts such as a small number of cancer deaths for young age groups, the 

asymptotic variance of the logit link function is too large which makes impossible to calculate the posterior distribution 

in MCMC [7][8]. In this respect, we first aim to forecast the age-specific cancer mortality among males in Korea using 

the multinomial time series model to reflect the dynamic structure of cancer mortality over time and age groups, and 

second aim to use a new link function to overcome the estimation problem using the power transformation [9]. Finally, 

we forecast the 10 year age-specific cancer mortality by 2040 in Korea. In Section 2, we introduce a multinomial time 

series model using a power transformation as a link function. In Section 3, the age-specific cancer mortality in Korea 

are forecasted. Section 4 includes conclusion remarks. 

 

II. MULTINOMIAL TIME SERIES MODEL 

 

Let the total number of age group be 𝐼, and total period of observation be 𝑇. We also let the number of deaths 

belonging to 𝑖 th age group be 𝑦𝑡𝑖  and total number of deaths be 𝑁𝑡  at time 𝑡 . Then, we assume that 𝑦𝑡𝑖  follow 

multinomial distribution at 𝑡  given 𝑁𝑡. That is, for 𝑡 = 1,2,⋯ ,𝑇, 
𝒚𝒕 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑡 ,𝝅𝒕) 

 

where 𝒚𝒕 = (𝑦𝑡1,⋯ , 𝑦𝑡𝐼)′ and  𝝅𝒕 = (𝜋𝑡1 ,⋯ ,𝜋𝑡𝐼)′. To incorporate covariates with 𝜋𝑡𝑖  as a linear model, a power link 

[10] function given by  

𝜂𝑡𝑖 =
(
𝜋𝑡𝑖

𝜋𝑡𝐼
)𝛼𝑖 − 1

𝛼𝑖
 

 

is considered as a link function where 𝛼𝑖  is a power. Note that [9] suggested to set the category with the largest number 
as the reference category in order to reduce the asymptotic variance of a link function. They showed that this make the 

implementation of MCMC possible by simulation studies. For a power transformation link function, a linear model is 

assumed as following. 

𝜂𝑡𝑖 = 𝒙𝒕𝒊
′ 𝜷𝒊 + 𝜖𝑡𝑖   

       = 𝛽𝑖 ,0 + 𝛽𝑖 ,1𝑡𝑖𝑚𝑒 + 𝛽𝑖 ,𝑗+1𝜂𝑡−𝑗 ,𝑖 +

𝑞

𝑗=1

𝜖𝑡𝑖 , 

𝜖𝑡𝑖~𝑁(0,𝜓𝑖)   
 

where time is time effect which have same values with indicator t, 𝒙𝒕𝒊 is a 𝑝(= 𝑞 + 2) dimensional covariate vector, 

and  𝜷𝒊 is a 𝑝 dimensional coefficient vector.  We assume that 𝜓𝑖 is a known scalar, and diffuse prior for 𝜷𝒊 as a hyper 
prior distribution. Then, we have a following full posterior distribution, 

𝐿𝑝𝑜𝑠 ∝    𝜋𝑡𝑖
𝑦𝑡𝑖

𝐼

𝑖=1

  𝜳 −0.5𝑒𝑥𝑝[−0.5(𝜼𝒕 −𝑿𝒕𝜷

𝑇

𝑡=1

𝑇

𝑡=1

)′𝜳−1(𝜼𝒕 −𝑿𝒕𝜷)] 

 

where 𝑿𝒕 = 𝑑𝑖𝑎𝑔(𝒙𝒕𝟏
′ ,⋯ ,𝒙𝒕,𝑰−𝟏

′ ) , 𝜷 = (𝛽1 ,⋯ ,𝛽𝐼−1) , and 𝜳  is a diagonal matrix whose ith element is 𝜓𝑖 .  For 

inference of 𝜷 and 𝜼𝑡  from the above full posterior distribution, Gibbs sampling is implemented. Each step for Gibbs 
sampling is provided as follows: 

 

Step 1: Sample 𝜼1 ,⋯ ,𝜼𝑡  successively from each conditional posterior distribution of 𝜼𝑡  given 𝜼𝑡−1 ,⋯ ,𝜼𝑡−𝑞 ,𝜷,𝒚𝒕. 

Step 2: Sample 𝜷 from the conditional posterior distribution of 𝜷 given 𝜼1 ,⋯ ,𝜼𝑡 . 
Step 3: Repeat Step 1 and Step 2 until samples are converged. 

 

The conditional posterior distribution of  𝜼𝑡  is 

𝜼𝑡 |𝜼𝑡−1 ,⋯ ,𝜼𝑡−𝑞 ,𝜷,𝒚𝒕 ∝   𝜋𝑡𝑖
𝑦𝑡𝑖

𝐼

𝑖=1

  𝜳 −0.5𝑒𝑥𝑝[−0.5(𝜼𝒕 − 𝑿𝒕𝜷

𝑇

𝑡=1

)′𝜳−1(𝜼𝒕 − 𝑿𝒕𝜷)]. 

 

Since the above distribution is not a standard form of distributions, Metropolis-Hastings algorithm is implemented [11]. 

For a proposal distribution of Metropolis-Hastings algorithm, normal approximated multinomial likelihood as described 

in [4]. Note that the sampled 𝜂𝑡𝑖  from Metropolis-Hastings algorithm can be transformed to cell probability as 

following. 
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𝜋𝑡𝑖 =

 
 
 

 
 (𝛼𝑖𝜂𝑡𝑖 + 1)1/𝛼𝑖

1 + (𝛼𝑖𝜂𝑡𝑖 + 1)1/𝛼𝑖𝐼−1
𝑖=1

      𝑖 ≠ 𝐼

1

1 + (𝛼𝑖𝜂𝑡𝑖 + 1)1/𝛼𝑖𝐼−1
𝑖=1

      𝑖 = 𝐼

  

 

By multiplying sampled 𝜋𝑡𝑖 s by a given 𝑁𝑡 , the estimates of 𝑦𝑡𝑖 s can be calculated. The conditional posterior 

distribution of 𝜷 is multivariate normal distribution as following. 

𝜷|𝜼1 ,⋯ ,𝜼𝑡  ~ 𝑁(𝜇∗,𝛴∗) 

 
where 

𝛴∗ = ( 𝑋𝑡
′𝛹−1𝑋𝑡)

−1
𝑡 , 𝜇∗ = 𝛴∗  𝑋𝑡

′𝛹−1𝜂𝑡𝑡 . 

 

By using the above conditional posterior distributions and Gibbs sampling, the age-specific cancer mortality rates are 

forecasted in the following section. 

 

III. FORECASTING OF AGE-SPECIFIC DEATHS FROM CANCER IN KOREA 

 

To forecast the age-specific cancer mortality, we use monthly data from January 1997 to December 2007, by 10-year 
age groups. Linear models to incorporate covariates to power link functions are given by 

η
ti

= β
i,0

+ β
i,1

time + β
i,2

η
t−1,i

+ β
i,2

η
t−2,i

+ ϵti . 

 

Note that the reference age group is 60-69 years whose mortality rate is the highest. The power αi’s are set to be 0.5 for 

age groups below 40 years and above 90 years, but those for other age groups are set to be near 0 which is equivalent to 

a logit link function.  

In this paper, 10,000 iterations of Gibbs samplings are implemented, and the convergence is evaluated by 

autocorrelations of Gibbs samples, Gelman-Rubin’s PSRF (potential scale reduction factor), and acceptance rates of 

samples from a proposal distribution in Metropolis-Hastings algorithm [12]. After performing Gibbs sampling, 

autocorrelations of β
ij
’s were between 0.2 and 0.4 for all i and j, and the acceptance rates of η

ti
’s were also appropriate 

because all rates were between 25% and 50% for all t and i [8]. The PSRF’s for all β
ij
’s also showed values less than 

1.2, implying Gibbs samplings were well performed.  

Table 2 presents the 95% confidence interval and median of the values obtained from the MCMC sample. Note that the 

numbers in parenthesis are a lower limit and upper limit. Here, the medians in all categories under 65 are negative for 

the time effect, meaning that the cancer mortality rates under 60 have been decreased over time relative to the baseline 

age 60-69 years. On the other hand, the medians in all categories over 70 are positive, meaning that the cancer mortality 

rate over 70 have been increased relative to the baseline age 60-69 years. In particular, the 80s are expected to have a 

much higher mortality rate than other age groups. 

 

TABLE 2 MEDIAN AND 95% CONFIDENCE INTERVAL OF ΒI0 AND ΒI1  
 

Age 𝛃𝐢𝟎 𝛃𝐢𝟏 
Median Lower limit Upper limit Median Lower limit Upper limit 

0-9 -1.85415 -2.5337 -1.1578 -0.00055 -0.0011 -0.00015 

10-19 -1.6559 -2.3503 -0.9865 -0.00065 -0.00115 -0.00015 

20-29 -1.68195 -2.35255 -1.02525 -0.0011 -0.00175 -0.00055 

30-39 -1.3223 -1.83965 -0.7933 -0.0021 -0.00305 -0.00115 

40-49 -1.0941 -1.5534 -0.64505 -0.0032 -0.0049 -0.0016 

50-59 -0.33715 -0.4866 -0.18945 -0.0019 -0.00325 -0.0005 

70-79 -0.27315 -0.4067 -0.1453 0.0011 0.0004 0.0019 

80-89 -1.7936 -2.55785 -1.03535 0.0056 0.00305 0.00825 

90-99 -1.6243 -2.37645 -0.88335 0.00085 0.0003 0.0014 

100+ -1.9913 -3.0647 -0.8934 0 -0.0005 0.0005 

 

Table 3 presents the predictive distribution of the 10-year age-specific cancer mortality rate of male in Korea by2040. 

As shown in Table 3, the age-specific cancer mortality rates under 70 years are decreasing over time, while those over 

70 year are increasing over time. In particular, the mortality rate in 2030 for 80-89 years is expected to be about four 

times of that in 2005. While the mortality rate for 80-89 is expected to increase explosively, that over 90 is not expected 
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to increase significantly. This differs from the expectation that the mortality rate over 90 years will also increase due to 

the advancement of medical technology and the increase in life expectancy.  Such results seem that the dynamic 
structures are not reflected over the age of 90 years, due to its small number of cancer deaths. 

 

TABLE 3 AGE-SPECIFIC CANCER MORTALITY OF MALE 

 

Year 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100 100+ 

2000 0.3% 0.7% 0.9% 3.0% 8.9% 21.2% 31.5% 24.9% 7.8% 0.4% 0.0% 

2005 0.3% 0.4% 0.6% 2.1% 8.2% 16.9% 30.8% 28.7% 11.0% 1.0% 0.0% 

2010 0.2% 0.2% 0.4% 1.1% 7.3% 14.2% 27.9% 31.8% 15.1% 1.0% 0.0% 

2020 0.1% 0.1% 0.0% 0.1% 5.0% 8.8% 21.8% 34.4% 26.7% 1.7% 0.0% 

2030 0.0% 0.0% 0.0% 0.0% 3.1% 4.8% 15.1% 31.6% 42.0% 2.0% 0.0% 

2040 0.0% 0.0% 0.0% 0.0% 1.7% 2.4% 10.2% 30.7% 52.0% 3.0% 0.0% 

 

IV. CONCLUSION 

 

In this paper, we applied a multinomial time series model using power transforms as a link function to the age-specific 

cancer mortality, in order to not only ensure the internal consistency but also overcome the difficulty of estimation in 

MCMC. The predicted cancer mortality rates for old age groups are expected to be increasing, while those for younger 

ages are decreasing. However, the proposed multinomial time series model can be used to under the given total number 

at each time. Therefore, if the total number in future - such as the total number of cancer deaths in the future - is 
unknown, this model cannot be used to forecast the future number of cancer deaths for each age group.  In order to 

solve this problem, it is necessary to incorporate the model for predicting total cancer deaths in the future into the 

multinomial time series model, as suggested by [1][2]. Furthermore, as indicated by the predicted results of the age-

specific mortality rate in Section 3, the underestimated prediction results over 90 years old, should be considered to 

improve in the future work. 
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